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Fully developed rotating turbulent channel flow has been studied, through direct
numerical simulations, for the complete range of rotation numbers for which the flow
is turbulent. The present investigation suggests that complete flow laminarization
occurs at a rotation number Ro = 2Ωδ/Ub � 3.0, where Ω denotes the system rotation,
Ub is the mean bulk velocity and δ is the half-width of the channel. Simulations
were performed for ten different rotation numbers in the range 0.98 to 2.49 and
complemented with earlier simulations (done in our group) for lower values of Ro.
The friction Reynolds number Reτ = uτδ/ν (where uτ is the wall-shear velocity and ν

is the kinematic viscosity) was chosen as 180 for these simulations. A striking feature
of rotating channel flow is the division into a turbulent (unstable) and an almost
laminarized (stable) side. The relatively distinct interface between these two regions
was found to be maintained by a balance where negative turbulence production plays
an important role. The maximum difference in wall-shear stress between the two
sides was found to occur for a rotation number of about 0.5. The bulk flow was
found to monotonically increase with increasing rotation number and reach a value
(for Reτ =180) at the laminar limit (Ro = 3.0) four times that of the non-rotating
case.

1. Introduction
Rotating turbulent channel flow represents a generic flow situation where the

intriguing effects of rotation on turbulence can be visualized in a systematic manner.
For spanwise rotations, the mean Coriolis force is proportional to the magnitude
of the velocity and is oriented in the wall-normal direction. Hence, the magnitude
of the Coriolis force increases with increasing distance from the wall, and on the
side where the Coriolis force points towards the wall we have the equivalent of an
unstable density stratification. In this region, the fluid elements will tend to move and
thereby increase wall-normal mixing. This side is referred to as the unstable side. On
the other side (the stable side) there is the equivalent of a stable density stratification
and turbulence will there be suppressed.

The two layers, one with a strong tendency towards laminarization and one with
intensified mixing and rotation-induced structures, co-exist side by side and interact.
This gives a situation that forms a prediction challenge for both RANS- (Reynolds-
averaged Navier–Stokes) based turbulence models and large-eddy simulations (LES).

The development of a linear mean velocity profile in the centre of the channel where
the slope is close to twice the angular rotation rate is a striking feature of this flow.
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Of central interest for the understanding of rotational effects on turbulent flows
and their prediction is the study of the variation with angular rotation rate of the
many rotation-induced features.

The geometry of the flow case is the simplest possible, with two parallel infinite
walls with fluid in between that is driven by a pressure gradient. The simplicity
of the case makes it suitable for numerical as well as experimental investigations.
An experimental set-up must be long and wide enough so that the in- and outflow
conditions as well as the sidewalls have a negligible effect on the developed flow.
In direct numerical simulations (DNS) periodic boundary conditions are used in the
stream- and spanwise directions in order to obtain ‘infiniteness’. It is, however, crucial
to have a computational domain (or box) that is large enough to contain the largest
flow structures in order to minimize the effects of the periodic boundary conditions.

Previous works include the study by Kim, Moin & Moser (1987) who investigated
non-rotating channel flow at Reτ = 180. A domain size of 4πδ × 2δ × 2πδ in the
streamwise, wall-normal and spanwise directions respectively, was used in combination
with a pseudo-spectral method on a 192 × 129 × 160 grid. Many other studies of non-
rotating channel flow have followed in recent years.

Rotating channel flow has been studied through DNS by for instance
Kristoffersen & Andersson (1993). The size of the computational domain was the
same as that of Kim et al. (1987) but with a Reynolds number slightly larger (i.e.
Reτ = 194). Second-order central differences for the spatial derivatives in combination
with a resolution of 128 × 128 × 128 were used. Lamballais, Lesieur & Métais (1996)
considered both transitional and turbulent channel flow subject to rotation. The box
length in the periodic directions was reduced by a factor 2 compared to Kristoffersen
& Andersson (1993). Lamballais, Métais & Lesieur (1998) performed an LES study
of rotating and non-rotating channel flow. Experimental studies of rotating channel
flow have been performed by e.g. Johnston, Halleen & Lezius (1972), Nakabayashi &
Kitoh (1996, 2005) and Maciel et al. (2003).

Alvelius (1999) performed simulations of turbulent rotating channel flow for
Reτ = 180 and 360. A computational domain as large as 8πδ × 2δ × 3πδ was used
in some of the simulations. It was concluded that even though the box was very large
it was too short to completely capture the very elongated structures occurring at the
lowest rotation numbers. The box-length requirement was, however, found to be less
strict for higher rotation numbers.

Oberlack (2001) studied a group of flows through the use of symmetry methods and
deduced specifically for rotating channel flow that the applied system rotation breaks
the time-scaling symmetry in the centre of the channel. As a result, the slope of the
mean velocity profile in this region should be proportional to the system rotation rate.
However, the proportionality constant is left as a free parameter with this procedure
and Oberlack (2001) refers to experimental and DNS studies regarding this.

Wu & Kasagi (2004) performed an investigation of turbulent channel flow subject
to arbitrary system rotation by using combinations of streamwise, spanwise and wall-
normal rotation rates. By combining two orthogonal rotations, three different families
of cases were studied. Wu & Kasagi (2004) concluded that the spanwise rotation, if
applied, has the dominating effect on the flow. Nagano & Hatori (2003) used the
classical spanwise system rotation but also included heat transfer in their study.

The present study complements an earlier investigation in our group, by Alvelius
(1999), with new simulations for higher rotation numbers for the case of turbulent
channel flow rotating around the spanwise axis. The aim is to investigate the whole
range of rotation numbers for which the flow is turbulent and eventually to determine
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Figure 1. A schematic of the geometry and mean flow.

for which rotation number the flow laminarizes, or alternatively, to investigate what
happens for high rotation numbers. The present study makes use of the combined
database for the simulations in order to cover a wide range of the rotation numbers.
This allowed us to study trends of the behaviour of flow structures and statistical
features. Of special interest is the behaviour of the wall-shear velocity on the different
sides of the channel. Alvelius (1999) predicted that the difference between the wall-
shear velocity on the stable and unstable sides should decrease with increasing rotation
number for sufficiently high rotation numbers. This trend is in contrast to that for
low rotation numbers and is verified in this paper.

2. Flow case description and equations
The fundamental characteristics of the present flow case are well known and have

been given previously by numerous authors, see e.g. Kristoffersen & Andersson (1993)
and Lamballais et al. (1996). A description will also be given here for completeness.
A schematic picture of the flow is shown in figure 1. A pressure gradient is applied
in the x-direction in order to drive the flow. In the coordinate system shown in the
figure, the rotation is applied in the positive z-direction. The channel half-width is
denoted δ and the velocities in the x, y and z-directions are denoted u, v and w

respectively. Alternatively, the coordinates and velocities are denoted xi and ui with
i = 1, 2, 3. When studying the flow field, the instantaneous velocity and pressure fields
can be decomposed into a mean and fluctuating part as ui = Ui + u′

i and p = P +p′,
where Ui = ui and P = p and a bar means averaging of a quantity. In the present
study the averaging is in the homogeneous directions by combining typically fifteen
to twenty fields well separated in time and thus statistically independent.

When rotation is applied in the spanwise direction (Ωi = Ωδi3), the previously
symmetric mean velocity profile becomes asymmetric and the channel is divided into
a pressure (unstable) and suction (stable) side. The wall-shear velocity, defined as

uτ =

√
ν

∣∣∣∣dU

dy

∣∣∣∣
wall

∣∣∣∣ (2.1)

for non-rotating channel flow, is affected by this and for the rotating case is given by

uτ =
√

uu2
τ /2 + us2

τ /2 (2.2)

where uu
τ and us

τ are the wall-shear velocities on the unstable and stable sides,
respectively. Correspondingly, there are Reynolds numbers associated with these
velocities, Reu

τ and Res
τ , besides Reτ which is defined as

Reτ =
uτ δ

ν
. (2.3)
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It is also useful to define a Reynolds number based on the mean bulk velocity, Ub, as

Reb =
Ubδ

ν
(2.4)

where Ub is obtained through

Ub =
1

2δ

∫ + δ

−δ

U (y) dy. (2.5)

Many previous studies, see e.g. Kristoffersen & Andersson (1993), Lamballais et al.
(1996) and Alvelius (1999), indicate that dU/dy is very close to 2Ω in the centre of
the channel. As a result, an increased rotation rate gives an increased mean bulk flow.
This implies that the rotation number based on the mean bulk velocity, Ub, defined
as

Ro =
2Ωδ

Ub

, (2.6)

increases at a rate that is considerably slower than proportional to the rotation rate.
Alternatively, a rotation number based on uτ can be defined as Ro+ = 2Ωδ/uτ . Note
that Ro+ is directly proportional to the system rotation rate since uτ is constant for
constant-pressure-gradient channel flow.

2.1. Governing equations

All details of rotating turbulent channel flow are governed by the incompressible
Navier–Stokes equations formulated in a rotating frame of reference which, together
with the continuity condition, are given by

∂ui

∂t
+ uj

∂ui

∂xj

= − 1

ρ

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

+ 2εijkujΩk, (2.7)

∂ui

∂xi

= 0. (2.8)

In the present study where only spanwise rotation is considered, the components of the
rotation vector are given by Ωi =Ωδi3. The centrifugal acceleration term is absorbed
into the pressure and the last term of (2.7) represents the Coriolis force. As discussed at
the beginning of ğ 1, the mean Coriolis force is directly proportional to the streamwise
mean velocity, U . This implies that the region of unstable stratification will extend
from the wall on the unstable side to the point where dU/dy = 0. Correspondingly,
the stable stratification is restricted to the part of the channel where dU/dy < 0. It
should be noted that in some previous studies, the stable and unstable side have been
denoted the suction and pressure side, respectively.

Fundamentally important characteristics of channel flow can be understood by
investigating the equations for the mean velocity, the Reynolds-averaged Navier–
Stokes (RANS) equations. These equations are obtained by averaging over time or
the homogeneous spatial directions. For a fully developed channel flow only the
x-component of the mean velocity is non-zero. Hence, the RANS equations reduce to

0 = − 1

ρ

∂P

∂x
+

d

dy

(
ν
dU

dy
− u′v′

)
. (2.9)

Worth noting here is that the effect of system rotation on the mean flow enters only
through the u′v′-component of the Reynolds stress tensor since the corresponding
mean Coriolis term has zero x-component. Since d2U/dy2 is negative, the slope of
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u′v′ cannot be larger than −(∂P/∂x)/ρ. In the centre of the channel, away from the
wall where νd2U/dy2 is very small, the slope of uv can therefore be approximated
by −(∂P/∂x)/ρ and is thus essentially independent of the rotation rate for a given
imposed pressure gradient. By integrating across the channel from the wall, yw , to
some position y, one can further deduce that the total shear is given by the expression

ν
dU

dy
− u′v′ = ν

dU

dy

∣∣∣∣
y = yw

+
1

ρ

∂P

∂x
(y − yw). (2.10)

From this it is obvious that the wall-shear velocity is related to the pressure gradient
by ∂P/∂x = − (ρ/δ)u2

τ . This also holds in the rotating cases when uτ is the total
wall-shear velocity defined by (2.2). Note that for the rotating case, the value of the
term ν(dU/dy)|y = yw

in (2.10) will depend on whether the integration is done from the
stable or unstable side of the channel. This results in an offset in the y-direction of
the total shear for the rotating case compared to the non-rotating case.

The effect of rotation enters through the equation for the Reynolds stresses

∂u′
iu

′
j

∂t
+ Uk

∂u′
iu

′
j

∂xk

= Pij +Πij − εij + Dij + Cij (2.11)

through the Coriolis term given by

Cij = −2Ωk(u
′
iu

′
mεmjk − εimku′

mu′
j ). (2.12)

The remaining terms in (2.11) represent production, dissipation, pressure–strain and
diffusion, respectively, and are defined as

Pij = −u′
iu

′
m

∂Uj

∂xm

− u′
ju

′
m

∂Ui

∂xm

, (2.13)

εij = 2νu′
i,mu′

j,m, (2.14)

Πij =
2

ρ
p′s ′

ij , (2.15)

Dij = −Tij − Gij + Dν
ij , (2.16)

where the different parts of the diffusion are given by

Tij =
∂

∂xm

u′
iu

′
ju

′
m, (2.17)

Gij =
∂

∂xm

(
1

ρ
(u′

jp
′δim + u′

ip
′δjm)

)
, (2.18)

Dν
ij =

∂

∂xm

(
ν
∂u′

iu
′
j

∂xm

)
. (2.19)

From a turbulence modelling perspective the production and the Coriolis terms are
the only terms that can be expressed exactly as combinations of the known quantities
(those that are solved for). The rest, i.e. the pressure–strain, dissipation and diffusion,
must be modelled. Therefore, DNS provides the modeller with a useful tool for
investigating the properties of the different components of a turbulence model. By
evaluating the correlations that normally need to be modelled, the turbulence model
developer can make so-called a priori tests and compare the actual model predictions
with the exact expression for a given mean flow and Reynolds stress statistics. In
this way, the physical correctness of each of the terms can be studied rather than the
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model performance as a whole. Part of the aim of the present study is to provide flow
data in order to be able to develop a database for a priori testing.

2.2. Plausible scenarios for high Ro

Before considering the simulations for high Ro, it may be useful to consider the
plausible flow scenarios in this parameter region. First, one can conclude that all
previous studies of rotating turbulent channel flow have shown that the slope of the
mean velocity profile is very close to 2Ω in a part of the domain. In the previous
studies by e.g. Kristoffersen & Andersson (1993) and Alvelius (1999) this behaviour
has been shown to give an increasing mean bulk velocity with increasing rotation
number if a constant pressure gradient is applied. It is plausible that this trend
is broken at some point before or when the bulk flow would exceed that of the
corresponding laminar flow and that the flow is completely laminarized at this point.
Based on observations from earlier studies for lower rotation numbers, it seems sound
to assume that there is a region of the channel in which the mean velocity profile has
a slope of 2Ω as long as the flow is turbulent. It is also reasonable to assume that the
bulk velocity never exceeds the velocity of the corresponding laminar flow. These two
assumptions then imply that, for high Ro, the 2Ω-slope region can only extend over
a part of the domain on the unstable side where the corresponding laminar velocity
profile has a slope larger than 2Ω . For increasing Ω , the 2Ω-region should hence
decrease in extent until 2Ω is equal to the slope of the laminar velocity profile at the
wall. At this point, the 2Ω-region is ‘infinitely thin’ and the flow is laminar. In this
scenario the transition from turbulent to laminar flow is smooth and continuous with
respect to Ω . It should be noted that, for rotating Couette flow, Bech & Andersson
(1997) discovered that complete laminarization occurs when 2Ω equals the slope of
the laminar velocity profile. This is the direct analogue to when 2Ω is equal to the
slope of the laminar velocity profile at the wall for rotating channel flow.

The rotation number for which the laminarization occurs can be deduced by
considering the slope of the laminar velocity profile at the wall, dUlam

w /dy, and
the corresponding bulk velocity, Ulam

b . One must then have that 2Ω = dUlam
w /dy

which gives Ro = δ(dUlam
w /dy)/Ulam

b . By simply evaluating dUlam
w /dy and Ulam

b for the
laminar flow it is easily seen that laminarization would occur at Ro = 3.0. The present
study, as will be shown below, indicates that this scenario holds and that the flow is
laminarized at Ro = 3.0 and, furthermore, that a 2Ω-slope region is present as long
as the flow is turbulent.

A study incorporating a very high rotation number was performed by Lamballais
et al. (1996). In their investigation, transitional flow at rotation number 30.0
was considered. The initial random perturbations of small amplitude, imposed on
the laminar velocity profile, developed into nonlinear saturated two-dimensional
Tollmien–Schlichting waves. Lesieur, Métais & Comte (2005) further discuss
important aspects of the flow physics for different rotation numbers.

3. Simulations
The pseudo-spectral code by Lundblad, Henningson & Johansson (1992) was used

in the present study. It is based on the velocity–vorticity formulation and solves for
the wall-normal vorticity, ω2, and the Laplacian of the wall-normal velocity, �u2.
In this way, the fluctuating pressure is eliminated from the equations. Fourier series
expansions are used in the periodic x- and z-directions together with Chebyshev series
in the y-direction. Fast Fourier transforms (FFT) are used in the transformation
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Ro Ro+ Res
τ Reu

τ Reb ny

0.98 22.0 138.4 213.9 4026 129
1.07 25.6 141.1 212.1 4313 129
1.15 29.4 143.7 209.7 4601 129
1.21 33.1 146.5 207.4 4904 129
1.27 36.9 148.8 206.3 5193 161
1.50 55.0 159.1 198.6 6592 161
1.69 73.3 166.3 193.0 7809 161
1.87 91.7 171.3 188.4 8810 201
2.06 110.0 174.9 185.0 9605 201
2.49 146.7 179.2 180.8 10 597 201
3.00 180.0 180.0 180.0 10 800 201

Table 1. Rotation and Reynolds numbers. The ny-column shows number of nodes in
wall-normal direction.

between Fourier and physical space. Time integration is done using a Crank–
Nicholson scheme for the linear terms and a four-stage Runge–Kutta method for
the nonlinear terms. The flow is driven by a prescribed constant pressure gradient.
In this way the value of uτ and hence also Reτ and l∗ = ν/uτ are given for the fully
developed flow.

Simulations of fully developed rotating channel flow have been performed for
Reτ = 180 with the rotation numbers ranging from Ro = 0.98 to 2.49, corresponding
to Ro+ = 2δΩ/uτ = 22.0 to 146.7. The simulation for a particular Ro was initialized
with a velocity field from the preceding simulation of lower rotation number. The
first simulation was initialized with a velocity field in which lower wavenumbers had
been excited in such a way that continuity was fulfilled.

For brevity, we have chosen to focus on Ro =0.98, 1.50, 2.06 and 2.49. The size
of the computational domain was 4πδ × 2δ × 2πδ. An increase, with increasing Ro, in
wall-normal resolution from 129 to 161 to 201 modes was necessary in order to obtain
a numerically converged solution (see table 1 for details regarding rotation number,
wall-normal resolution, etc). For Reτ = 180 this corresponds to a node spacing of
�x+ = 11.8 and �z+ = 7.1 in the stream- and spanwise directions, respectively, and
an average node spacing in the y-direction of �y+ = 2.8, 2.23 and 1.79 for the three
different wall-normal resolutions, respectively.

Numerous investigations of channel flow, using DNS, have been reported
during recent years. The demands on spatial resolution set by numerical accuracy
requirements have been studied and the values used in the present study fall in the
range used in well-resolved simulations of non-rotating channel flow.

In order to obtain an indication of the expected flow laminarization at Ro = 3.0
an initial field consisting of a laminar velocity distribution with superimposed
disturbances of the type proposed by Henningson, Lundbladh & Johansson (1993)
was created. These disturbances consist of streamwise counter-rotating vortices and
are shown in figure 2 in which contours of the wall-normal velocity are displayed. The
disturbance amplitude corresponds to 1.0% of the maximum value of the streamwise
(laminar) velocity. The system rotation rate was set in accordance with Ro = 3.0 for
a laminar flow. These velocity disturbances decayed.

The computations were carried out on the Lenngren and Lucidor clusters at
Parallelldatorcentrum (PDC), KTH. The simulations were performed using up to 40
processors.
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Figure 2. Initial wall-normal velocity, contour spacing 0.05+ (wall units): (a) at y/δ = 0,
(b) at z/δ = 3.14.

4. Structures
In order to minimize the effect of the periodic boundary conditions it is important

to have a computational box large enough to contain the largest structures of the flow.
The size of the flow structures can be estimated through the two-point correlation
defined as

tp[f ](y, r) =
f ′(x + r)f ′(x)

(f ′)2
. (4.1)

If the box is sufficiently large, the two-point correlation is small at distances of half
the box size in the direction considered.

The two-point correlations of the streamwise fluctuating velocity, u′, as functions
of y are shown in figure 3 for four different rotation numbers between 0.98 and 2.49
and streamwise separations of up to half the box length in the x-direction. On the
unstable side of the channel the correlations are small for all rotation numbers. The
correlation lengths on the stable side are, on the other hand, significantly larger. For
some of the rotation numbers, a periodicity in the x-direction can be observed close
to the wall on the stable side of the channel. This is related to the elongated flow
structures in this region and is further discussed below. Differences in the two-point
correlation of u′, for low and intermediate rotation numbers, between the pressure
and suction side have previously been discussed by e.g. Kristoffersen & Andersson
(1993) and Alvelius (1999). Their results indicate that the largest correlations are
attained at low rotation rates for which long structures are formed on the stable
side of the channel while the turbulence levels are still of the same order as for the
non-rotating case. Lamballais et al. (1998) consider arbitrary separations and show
isosurfaces for the two-point correlations of the streamwise velocity fluctuations and
vorticity on the unstable side of the channel. Their results indicate that the streamwise
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Figure 3. Two-point correlation of u′, tp[u′](y, rx), as function of y and separation rx in the
x-direction for: Reτ = 180, and (a) Ro = 0.98, (b) 1.50, (c) 2.06 and (d) 2.49.

correlation length of u′ close to the wall on the unstable side is shorter for Ro = 1.50
than for the non-rotating case.

With respect to the high correlations seen on the stable side of the channel for large
separations for some rotation numbers, it is not possible to exclude an influence of
the periodic boundary conditions on the flow. However, as is demonstrated below in
ğ 5.2, the turbulence levels are very low in the part of the domain where tp[u′] attains
its largest value. It should also be noted that the maximum value of tp[u′] on the

stable side is located much closer to the wall than the peak of the u′u′+-profile. These
residues of turbulence mainly consist of large structures of low intensity and will
be present until the flow is completely laminarized. Hence, whereas the correlations
are high close to the wall on the stable side of the channel, the low turbulence
intensities imply that any physical inconsistences occurring in this region due to
periodic boundary conditions should be of minor importance.

In figures 4 to 6 various contour and magnitude plots are shown for the
instantaneous streamwise and wall-normal fluctuating velocities at different, rotation
numbers. Figures 4 and 5 show (x, y)-planes of instantaneous fluctuating streamwise
and wall-normal velocity for Ro = 0.98 and Ro =2.06. Relative magnitude differences
are indicated by colour. As a complement, velocity contours are imposed in the
corresponding plots. The plots of a particular figure correspond to the same
instantaneous velocity field and plane. For Ro = 0.98 (figure 4), the turbulence is
suppressed on the stable side of the channel where there are no small-scale flow
structures. The wall-normal velocity fluctuations are restricted to a distinct region on
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Figure 4. Magnitude and contour plots of instantaneous u′ (a) and v′ (b) for Ro = 0.98 in
an (x, y)-plane. u′+ = 0.5 (−) and u′+ = −0.5 (−−) for the streamwise fluctuating velocity.
v′+ = 1.0 (−) and v′+ = − 1.0 (−−) for the wall-normal fluctuating velocity.
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Figure 5. As figure 4 but for Ro =2.06.

the unstable side of the channel. The streamwise fluctuating velocity shows the same
type of trend but still has the elongated and slanted structures. A small tilting of the
structures can also seen as a natural consequence of the action of mean shear.

For Ro = 2.06 (figure 5), the turbulence is strongly damped and has significant wall-
normal fluctuations (v′+ = ± 1) only in a thin band close to the wall on the unstable
side. The streamwise fluctuations are significant over a much wider part of the channel,
but the characteristics of the stable and unstable sides are still fundamentally different,
with small structures on the unstable side and long slightly slanted structures on the
stable side. This indicates that the turbulence is strongly stratified in the wall-normal
direction, with an active unstable side which influences the passive stable side. Hence,
with the aid of these plots we may interpret the large extended u′-structures on the
stable side as a response to the ‘forcing’ of the stable side from the wall-normal
fluctuations on the unstable side. The longer slanted structures on the stable side
for the higher rotation numbers are reflected in the behaviour of the corresponding
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Figure 6. Wall-normal velocity fluctuations: magnitude and contour plots of v′+ = 1.0 (−)
and v′+ = −1.0 (−−) in (y, z)-plane for (a) Ro = 0.98, (b) 1.50, (c) 2.06 and (d) 2.49.

two-point correlations shown in figure 3 in which a periodicity with relatively large
correlations can be observed, even for separations up to half the box length in the
x-direction.
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The strong restriction of the wall-normal velocity fluctuations to an increasingly
thin part of the unstable side of the channel, for increasing rotation numbers, seen in
figures 4 and 5, is also seen in the (y, z)-planes shown in figure 6. This flow feature is
strikingly clear from these plots and should be seen as the underlying mechanism for
the increasingly laminar-like flow for increasing rotation rate.

4.1. Elongated streamwise structures, roll cells

Elongated streamwise counter-rotating vortices, so-called roll cells, have been observed
in previous investigations of rotating turbulent channel flow, see e.g. Johnston et al.
(1972) and Kristoffersen & Andersson (1993). These roll cells have been shown to be
present on the unstable side of the channel for a variety of rotation numbers. Whereas
the time-scale of the roll cells is long compared to the turbulence time scale, τ = K/ε

(where K is the kinetic energy and ε its dissipation rate), a very limited number of
simulations indicate a long-time steadiness of this kind of structure. Johnston et al.
(1972) reported that the time scale of the roll cells was long in comparison to the
other turbulence scales, but no truly steady structure of this type was found. In the
study by Kristoffersen & Andersson (1993), roll cells with a longer time scale than
the total sampling time of 5.6δ/uτ were obtained for Ro = 0.15. This was, however,
the only rotation number in their study for which these structures persisted over the
total sampling period. Lamballais et al. (1998) also address roll cells and conclude
that they are identifiable for small rotation numbers, but that they seem to vanish
for higher rotation numbers and become more unstable for high Reynolds numbers.
In the present study, the illustration of roll cells has been restricted to one rotation
number, Ro = 1.27.

This investigation is carried out by studying, cross-stream (y, z) planes. Three cases
have been explored: (i) an instantaneous (y, z)-plane, (ii) a (y, z)-plane averaged over
a complete computational field (same field as (i)) and (iii) a (y, z)-plane averaged
over all fields. The samples used for case (iii) consists of twenty-one different fields
equally spaced in time over a total time interval of ∼ 109δ/uτ . The results for the
wall-normal and spanwise velocity components for (i) and (ii) are shown in terms
of velocity contours in figure 7. The wall-normal and spanwise velocities for (ii) are
denoted vf and wf respectively. When averaged over a single field, the corresponding
cross-stream-plane flow pattern shows structures that are similar to roll cells, see
figures 7(b) and 7(d). These patterns are, naturally, somewhat different from those
of the instantaneous planes, see figures 7(a) and 7(c). It is important to note that
the area of the cross-sectional plane that has velocity magnitudes larger than those
indicated by the contours is smaller when averaged over a complete field than for
the instantaneous case. Furthermore, when considering (iii), and hence averaging over
all streamwise position of all fields, the magnitude of the averaged wall-normal and
spanwise velocity components in no part of the corresponding plane exceeds the value
of 0.5 wall units. The plot corresponding to figure 7 would for case (iii) hence be
empty, and is therefore not shown. It should be pointed out, however, that even for
this case flow patterns similar to those of case (ii) can be seen if the iso-contour value
is chosen adequately low. One can observe that the spanwise position of this pattern
does not exactly coincide with the pattern of case (ii). This indicates that the observed
structures are non-stationary. Furthermore, the decrease in magnitude for increased
sampling periods inevitably implies that the averged pattern should vanish when very
long sampling periods are used.

Streamwise roll cells can also be identified by two-point correlations in the stream-
and spanwise directions. These correlations are plotted for the wall-normal and
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Figure 7. Velocity contours in (y, z)-planes at Ro = 1.27 for (a) instantaneous v′+ = ±0.5 at
one x-position, (b) v′ averaged over one field, vf + = ±0.5, (c) instantaneous w′ at the same
x-position as (a) and (d) w′ averaged over one field wf + ±0.5.

spanwise velocities for Ro = 1.27 in figure 8. Stationary roll cells, if present, would
be seen as significant magnitudes in the two-point correlations of v′ and w′ on
the unstable side of the channel up to large streamwise separations. The same flow
structures would give oscillations, with the same period seen in figure 7(a, b), of
significant magnitude in the spanwise correlations for large separations in this part
of the channel. An example of such behaviour is given by Kristoffersen & Andersson
(1993) for Ro = 0.15, the rotation number for which the roll cells persisted over the
entire sampling period. In the present study, strong negative correlations can be seen
for small spanwise separations for both v′ and w′. It can be noted that this separation
is of the same order as the spanwise extent of the structures discussed above. For
larger separations, small oscillations are presented, but the magnitude is very small.
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Figure 8. Two-point correlation for Ro = 1.27 of (a) v′ for spanwise separations, (b) v′ for
streamwise separations, (c) w′ for spanwise separations and (d) w′ for streamwise separations.

While a strong correlation for short spanwise separations indicates that there are
streamwise vortex-like structures, the weak correlation for larger separations means
that these vortices are unsteady in space. A shift to negative values of significant
magnitude can be observed for w′ at y/δ ∼ 0.8 in figure 8(c). This is explained by
the regions of positive and negative w′ seen in figure 7(c) at the same wall-normal
position. The streamwise correlations in figure 8(b, d) indicate that the correlation
lengths on the unstable side of the channel are rather short in this direction. This
supports the indications of non-steady vortices. It can also be noted that the most
dramatic behaviour is seen on the stable side of the channel where the residues of the
damped turbulence consist of essentially elongated structures.

The flow structures seen in figure 7 show similarities with Dean-type vortices
(and similar to Taylor–Görtler vortices) observed in earlier studies by, e.g., Johnston
et al. (1972) and Kristoffersen & Andersson (1993). The structures are, however, not
stationary in time or in space although the time scale is rather large. While keeping
in mind that the present study involves a different set of rotation numbers, it should
be noted that the total sampling time in this investigation is significantly longer than
that in the study by Kristoffersen & Andersson (1993).

5. Flow statistics
The turbulence statistics are collected from typically fifteen to twenty computational

fields where each field is separated by a time period of ∼ 5.5δ/uτ . The averaging is done
in space in the homogeneous directions by considering (x, z)-planes corresponding to
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the same y-coordinate from all the fields. The flow is driven by a constant pressure
gradient and hence Reτ should attain (or be very close to) the a priori set value of
180. Table 1 presents the Reynolds and rotation numbers obtained in the present
simulations.

5.1. Mean flow

The mean velocity profiles for Ro = 0 to 2.49 are shown in figure 9. For comparison,
the mean velocity profiles from the simulations by Alvelius (1999) for Ro =0, 0.43
and 0.77 are plotted in the same figure. The corresponding laminar profile has been
plotted on the same level as that of Ro = 2.49, for comparison (dash-dotted curve).
The laminar profile, as expected, matches the profile for the Ro = 3.0 case.

As can be seen, the slope of the mean velocity profile is very close to twice the
system rotation rate (dU/dy ≈ 2Ω) for all turbulent cases. The extent of this region
does, however, vary. For low rotation numbers, the study by Alvelius (1999) shows
that this region increases its extent for increasing rotation numbers. For high rotation
numbers it is clear from the present study that the 2Ω-slope region (for high enough
Ro) decreases in extent for increasing rotation numbers.

The damping of the turbulence due to the increased system rotation gives an
increased mean bulk flow, U+

b . This is demonstrated in figure 10(a) in which the
normalized bulk velocity U+

b = Ub/uτ is plotted against the rotation number. The
simulation results are marked with circles and the solid line is plotted in order to
clarify the trend. Note that U+

b = 60 in figure 10(a) corresponds to the laminar bulk
flow with Reτ = 180.

The rotation also affects the wall-shear velocities on the stable and unstable sides
of the channel, as is shown in table 1. This is also depicted in figure 10(b) where



192 O. Grundestam, S. Wallin and A. V. Johansson

0 0.5 1.0 1.5 2.0 2.5 3.0
10

20

30

40

50

60

U +
b

Ro

0.7

0.8

0.9

1.0

1.1

1.2
uτ

u/uτ

uτ
s/uτ

0 0.5 1.0 1.5 2.0 2.5 3.0
Ro

Figure 10. (a) Normalized bulk velocity, U+
b , for different rotation numbers. DNS (�) and

laminar U+
b (−−). (b) Ratios uu

τ /uτ and us
τ /uτ for different rotation numbers.

the ratios us
τ /uτ and uu

τ /uτ are plotted against Ro. The data for the lower rotation
numbers (Ro � 0.77) are taken from Alvelius (1999). The results presented here agree
well with those of Kristoffersen & Andersson (1993). It can be noted that the largest
difference in the wall-shear velocities on the unstable and stable sides should be
obtained for a rotation number around 0.5. After this threshold rotation number
the difference between the two sides decreases with increasing rotation number. For
Ro = 3.0, in the present study, the flow has become laminar due to complete damping
of the turbulence and the difference between us

τ and uu
τ has vanished.

The higher uu
τ for the rotating cases compared to the non-rotating cases gives a

reduction of resolution. In the present study, the highest uu
τ is obtained for Ro =0.98.

This corresponds to a resolution decrease, in wall units, by a factor of 1.19 on the
unstable side of the channel compared to the non-rotating case. This should still be
within tolerable limits.

5.2. Reynolds stresses

The normalized Reynolds stresses u′v′+ and the diagonal components u′u′+, v′v′+ and
w′w′+ are shown in figure 11. The corresponding components from the simulations
by Alvelius (1999) are also plotted for Ro = 0, 0.43 and 0.77. Ro = 0.43 is interesting
from the point of view that it is closest (of the rotations studied by Alvelius 1999)
to the rotation number for which the trend of decreasing u′v′+ is broken. It is also
the rotation number that corresponds to the largest difference between uu

τ and us
τ in

figure 10(b). In the same simulations, Ro =0.77 is the largest rotation number studied.
Ro = 0 is included for comparison.

The rotation strongly affects the Reynolds stresses since it enters explicitly in
the governing equations. Even the effect of small rotation rates is dramatic as
demonstrated in previous studies by e.g. Kristoffersen & Andersson (1993) and

Alvelius (1999), and the u′v′+-profile deviates significantly from the non-rotating case.

As the rotation rate is increased the magnitude of u′v′+ decreases, as shown in

figure 11. It should be noted that in the region −0.8 � y/δ � 0, the u′v′+-profiles for
Ro = 0 and Ro = 1.50 are remarkably close to each other. Closer to the wall, however,

the difference is much larger and the slope of the u′v′+-profile is significantly steeper
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Figure 11. Reynolds stresses for Reτ =180 and Ro =0.98, 1.50, 2.06 and 2.49 (solid lines).
Direction of arrow indicates increasing rotation number. Also shown are Ro =0 (· · ·), Ro = 0.43
(−·) and Ro =0.77 (−−) from Alvelius (1999).

for the rotating cases. As a result the wall-shear velocity attains larger values on the
unstable side.

Note the ‘second plateau’ of the u′v′+-profile. Here, y/δ ∼ 0.25, the Reynolds shear
stress is negative while the slope of the velocity profile changes sign. This implies a
negative production in the part of this region where the mean velocity profile has a

negative slope. Closer to the wall on the stable side, the u′v′+-levels are very small as
can be seen in figure 11.

The normal components of the Reynolds stress tensor are plotted in figure 11.
For the rotation numbers studied, the increased rotation rate has an overall damping
effect on the normal components. This effect is however stronger in the centre of

the channel than close to the wall. u′u′+ is an exception from this with a strong
influence of the rotation on the peak close to the wall on the unstable side. In fact, for
the higher rotation numbers the u′u′-component, which is completely dominating for
the non-rotating case, gives the smallest contribution to the total turbulence kinetic
energy. It should also be noted that the wall-normal velocity fluctations are small for
the major part of the stable side. This is increasingly evident with increasing rotation
number and is of course a result of the trend seen in figure 6. The other normal
components are relatively small, but still significant in this region, corresponding to
the structures seen in figure 5.

The normalized turbulence dissipation rate is shown in figure 12. In contrast to all

Reynolds stresses (except u′u′+) the behaviour of ε+ is monotonic on the unstable
side of the channel and increasing with increasing rotation for rotation numbers up to
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Figure 12. Normalized dissipation rate, ε+, for Ro = 0.98 (−) and Ro = 1.50, 2.06 and 2.49
(thick dashed lines). Direction of arrow indicates increasing rotation number for Ro � 1.50.
Also shown, Ro = 0 (· · ·), Ro = 0.43 (−·) and Ro = 0.77 (−−) from Alvelius (1999).

Ro = 1.50 (of the shown Ro). For higher rotation numbers, an increased damping for
increasing rotation numbers can be seen. On the stable side, the dissipation rates are
low and comparable for all rotations numbers in the present study. It is interesting,
however, that for all the rotating cases the dissipation is very close to zero at the wall
on the suction side.

6. Balance of the Reynolds stress transport equation
In order to illustrate the influence of the different physical phenomena on the

statistics, the different terms of the Reynolds stress transport equation are plotted
in figure 13 for Reτ = 180 and Ro = 1.50. For this rotation number, the largest
magnitudes can be observed on the unstable side of the channel where the turbulence

is produced. While the production feeds only the u′u′+ and u′v′+ components, the

Coriolis term redistributes energy into the v′v′+ component and is balanced by,
essentially, the dissipation and the pressure–strain. The pressure–strain, on the other

hand transfers energy from the v′v′+-component back into the u′u′+- and especially

the w′w′+-components. This is the only mechanism for feeding energy into the w′w′+-
component. One can observe that the diffusion is small for all components except

v′v′+ for which, however, the triple and pressure parts of the diffusion balance each
other in a large region of the unstable side. The dissipation is significant only for the

v′v′+- and w′w′+-components.

The negative production of turbulence kinetic energy due to negative u′v′+ and
negative slope of the mean velocity profile in a region to the right of where dU/dy = 0
can be seen in figure 13 through P11. In terms of flow physics a negative production
means an inversed energy cascade, i.e. energy is taken from the turbulence and fed
into the mean flow. This is an interesting effect that is seldom encountered. Since
energy is fed to the total turbulence kinetic only through P11, a negative P11 on the
stable side must imply that there is a mechanism that transports turbulence into this
region. In order to study this phenomenon in more detail figure 14 presents plots of

the region −0.2 � y/δ � 1.0 for the u′u′+-, v′v′+- and u′v′+-components. As can be
seen, the transport of turbulence kinetic energy into the stable side of the channel
probably occurs through the pressure correlation part of the diffusion, Gij , for the
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v′v′+-component. A closer investigation of the u′u′+-component of figure 14 reveals,
however, that there is a region y/δ ∼ 0.8 where P11 > 0. In comparison to G22, P11

can still be regarded as insignificant. Furthermore, the small peak of u′u′+ on the
stable side of the channel seen in figure 11, approximately coincides with the peaks
of the redistribution terms and G22 in figure 14. The presence of turbulence in this

region should therefore be ascribed to the diffusion of v′v′+ through G22.
The diffused wall-normal velocity fluctuations are redistributed, through the

pressure–strain correlation, to the u′u′+-component which despite negative production
and a damping Coriolis term, attains a significant magnitude on the stable side. From
this point of view, the effects of pressure–strain and Coriolis forces should be seen as

one single redistributing mechanism. The non-zero u′u′+, which is larger than v′v′+ in

this region, then implies that the Coriolis term, C12 = 2Ω(v′v′+ −u′u′+), forces u′v′+ to
be negative. This effect is slightly amplified by the pressure part of the diffusion, G12.

Balance of the u′v′+-equation, in this region, is obtained through the pressure–strain
which seems to attain the appropriate magnitude more passively. For this particular
flow case, a negative production hence relies strongly on the diffusion of wall-normal
velocity fluctuations to the stable side of the channel and that at least a part of this
energy is redistributed to the streamwise velocity fluctuations.

Hence, the elongated flow structures seen on the stable side of the channel in
figures 4 and 5 are sustained by the forcing from the unstable side. From a statistical
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perspective, this mechanism corresponds to the diffusion of wall-normal stress, vv,
from the unstable side into the stable side of the channel.

7. Discussion
For all turbulent simulations in the present investigation, the classical features of

e.g. a mean velocity slope of approximately twice the system rotation rate in the
centre of the channel and an increasingly more laminar-like stable sides observed
in previous studies, see e.g. Kristoffersen & Andersson (1993) and Alvelius (1999),
are confirmed. The trend of decreasing difference between the wall-shear velocities
of the stable and unstable sides with increasing rotation number for high enough
rotation numbers, suggested by Alvelius (1999), is also confirmed. The extent of the
low-turbulence region on the stable side increases with increasing rotation rate and
the overall turbulence level decreases. Eventually the flow laminarizes completely and
the velocity profile is given by a (symmetric) parabola. Among the rotation numbers
studied, complete flow laminarization occurs at Ro =3.0 for which the initially added
disturbances are damped out.

The numerical simulation for each rotation rate was initiated with the turbulent
solution from the preceding lower rotation rate. Moreover, the case Ro = 2.06 was
also initiated with a laminar field with a superimposed disturbance which evolved
to the same statistical solution as when initiated with the turbulent solution. The
Ro = 3.0 case was, however, only initiated with a laminar field with a superimposed
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2.06 and 2.49. The arrow indicates increasing rotation number. Laminar flow (−−), Ro = 3.0.

disturbance. Laminarization of a turbulent state is, thus, not completely proven but
the monotonic decay of turbulence during the successive increase of rotation rate up
to Ro =2.49 and the repeatability of one of the highest rotation rates from different
initial states are strong indications that the flow will laminarize at or below Ro =3.0.

The limiting behaviour at the laminar state can also be analysed by considering
linear stability. A rotating shear flow is linearly stable if the parameter B = 2Rol(2Rol−
1), introduced by Bradshaw (1969), is positive and Rol = Ω/(dU/dy). For a parabolic
laminar velocity profile, B will be negative everywhere for Ro > 3.0, and, thus, the
flow cannot undergo transition to turbulence until Ro < 3.0. Whether turbulence can
be sustained for Ro > 3.0 cannot, however, be predicted from linear stability theory.
Stability might be preserved by viscous effects even for lower rotation numbers. It
should be pointed out that for Ro =3.0, the absolute value of the mean velocity slope
at the wall of either side of the channel is equal to 2Ω .

Interesting comparisons can be made with rotating homogeneous turbulent flow
regarding the laminarization of rotating turbulent channel flow. For this purpose it
is useful to consider Rol as the local rotation number. According to the analysis
of rotating homogeneous shear flow made by various authors, see e.g. Salhi &
Cambon (1997) and Brethouwer (2005), neutral stability is achieved for Rol = 0.5
while Rol > 0.5 should have a damping effect on the turbulence. For negative Rol ,
Brethouwer (2005) demonstrated that Rol = −0.25 leads to decaying turbulence in
rotating homogeneous shear flow. Rotating turbulent channel flow is affected by
the same mechanisms and in order to see the similarities more clearly, Rol of the
present simulations is plotted for different rotation numbers in figure 15. The region
where Rol =0.5 simply corresponds to the 2Ω slope of the mean velocity profile.
Note also that when dU/dy changes sign, Rol does too. The analogy with rotating
homogeneous shear flow indicates that, for the higher rotation numbers, disturbances
can grow in a narrow band close to the wall on the unstable side only. It is also clear
that the Ro = 3.0 case is outside the ‘growth region’ in the whole domain. Turbulence
can hence be expected to decay, implying a laminar flow, which apparently also
happens. The region where Rol ∼ 0.5 also seems to be strongly connected to the part
of the domain where significant wall-normal velocity fluctuations can be found. By
analysing the DNS data one can further observe that the peak of the production of
turbulence kinetic energy on the unstable side of the channel is very close to where



198 O. Grundestam, S. Wallin and A. V. Johansson

Rol = 0.25. There are, thus, indications from both homogeneous shear flow as well as
from the present DNS of rotating channel flow that the linear stability argument is
also applicable in turbulent flow around the Rol = 0.5 neutral stability limit. If this is
the case, the 2Ω slope can be explained. If the mean velocity profile is perturbed from
the 2Ω slope the turbulence will be amplified or damped such that the mean flow will
be driven back to the 2Ω slope. This mechanism has been demonstrated by Tanaka
et al. (2000) for a laminar mean velocity profile with superimposed large (nonlinear)
perturbations. Hamba (2006) used modelling concepts, including non-local effects, to
study the mechanism underlying the zero mean absolute vorticity state in rotating
channel flow, i.e. the tendency to establish the 2Ω slope.

It is important to emphasize that channel flow is affected by phenomena not present
in homogenous shear flow. Diffusive transport of Reynolds stress components, for
instance, is probably an essential mechanism for maintaining turbulence in the part of
the domain where Rol is not favourable. Furthermore, as pointed out in the preceeding
section, there is a small production on the stable side close to the wall. This is true for
all turbulent rotation numbers in the present study, even for Rol < −0.25 at the wall
on the stable side, and is a result of having a very low, but still high enough, correlation
between the streamwise and wall-normal velocity fluctuations in this region. From
this point of view the velocity fluctuations are not completely damped out on the
stable side as one might believe by looking at figure 11. It seems, however, that a
necessary condition for obtaining a turbulent flow at all is to have an adequately
low/high Rol in some region.

The present investigation is for a rather restricted Reynolds number of Reτ = 180.
For low Reynolds numbers the flow will be damped by viscous effects, so there is
very probably a Reynolds number dependence on the rotation number for which
the flow laminarizes. We expect, however, that the indications of laminarization of
rotating turbulent channel flow at Ro =3.0 are so strong that this limit can be seen
as a universal upper limit for which this flow must be laminarized for all Reynolds
numbers. This will be addressed in future studies.

The authors gratefully acknowledge the use of simulation data obtained by Krister
Alvelius, see Alvelius (1999), for comparison with data obtained in the present simu-
lations.
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